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ABSTRACT

A list-processing computer programming language is valuable

for the coding of such logical algorithms as arise in truth function

simplification because of ease of coding, improved use of com-

puter storage, and a reduction of limitations on the number of

variables that can be handled. The effectiveness of an algorithm

implemented by means of a list-processing system is much less

dependent upon the characteristics of the particular computer

used than if basic machine language instructions are employed.

In combination with the ease of coding, this independence per-

mits the evaluation of the relative effectiveness of several

diverse algorithms or heuristic implementations of a single

algorithm. This paper demonstrates the usefulness of the MIT

709 LISP I System in coding several procedures for determina-

tion of the prime implicants and irredundant forms of a truth

function. The capabilities and limitations of these programs

are discussed as is their application to evaluating the algorithms

they represent.
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USE OF A LIST-PROCESSING LANGUAGE IN PROGRAMMING
SIMPLIFICATION PROCEDURES

INTRODUCTION

This paper is primarily concerned with an analysis of the ad-

vantages of a list-processing language in programming switching

circuit minimization algorithms. The MIT LISP I System was used

in this study, and it can be considered typical of several contemplated

or existing systems in drawing conclusions about the usefulness of

a list-processing language in the simplification of truth functions.

The minimization problem has received considerable attention

in recent years. Aside from a few isolated results, however,

only the problem of finding the simplest normal equivalent of a

truth function has been completely solved. In this problem, many

writers have shown that only certain conjunctions of literals need
1

be considered as possible clauses. Quine calls such clauses

'prime implicants.' Simplification can then be considered in two

parts: determination of the prime implicants (or perhaps a

particular subset of them), and selection of various prime im-

plicants whose alternation is a minimal normal form.

With respect to the first problem, a hasty perusal of the

literature discloses a plethora of alternate treatments. Closer

scrutiny, however (if we are patient enough to plow through

the morass of different notations and definitions the authors have

used so effectively to make our comparison more difficult) reveals

that there are merely a large number of variations on a relatively

small number of distinct themes. Whether the notation is that of

the algebraic topologist or that of the logician, the differences

Received for publication December 1961.
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are inherent in the methods themselves. These fundamentally

different themes include:

1) Quinel s1 determination of the set of prime implicants

from the developed normal (canonical or standard sum) form.

Briefly, on an n-dimensional cube model (Quine, of course, used

the notation of the logician) all pairs of (m-1)-dimensional cells

are compared to determine whether or not they constitute an

m-dimensional cell; the process is then repeated on the set of

m-dimensional cells so produced.

2) Urbano and Mueller's 2 determination of a set of prime

implicants (not necessarily the entire set) also from the developed

normal form. In this approach all basic cells that emanate

from a vertex are found. In Quine' s terminology, all prime im-

plicants that are subsumed by a given clause of the developed

normal form are computed directly.

3) Quines s 3 determination of the prime implicants from any

normal formula by iterated consensus taking. A discussion of

this approach will be deferred until later.

The second problem, that of selecting prime implicants to

make up minimal forms, is treated in different fashion by a
4 56

number of researchers including Gazale, Mott, McCluskey, and

this writer. 7,8 Quine 1,3,9 also spends many pages upon this

problem, but aside from a few results concerning indispensable

and absolutely dispensable prime implicants, he has little to say

about the problem of selection.

PROGRAMMING TRUTH FUNCTION SIMPLIFICATION

The theoretical work on truth function simplification has

been complemented by the coding of various of these methods for

digital computers. Most of these programs are either unpublished

or else merely referred to briefly in a theoretical paper as a

means of effecting the methods of that paper. Prather 1 0 has
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published an account of a numerical method of effecting Urbano and

Mueller' s 2 algorithms, and programs to mechanize various of the

methods of the previous section have been coded at MIT, Columbia

University, IBM, Remington Rand Univac, and the General Electric

Company, to name a few. Many of these programs were written as

tools for the actual simplification of truth functions as required

by some application, such as the design of logical components for

a digital computer.

These programs have much in common. Because they are of
a logical rather than a computational nature, they are all written

either in basic machine code or in a language not far removed

from it. They characteristically require large amounts of storage

for many lists of variable and changing lengths and a fair amount

of storage for the instructions. Upwards of 2000 instructions are

the general rule for a complete simplification procedure. These

instructions are usually sufficiently complicated to require a

tangled bird's nest of a flow chart even for those programmers

who do not believe in flow charts.

Another common feature shared by all such programs is their

limitation to some fixed maximum number of literals that can be

handled. This number seldom exceeds ten, and even then one or

another of the temporary storage blocks often turn out to be in-

sufficient. The individual digits or bits of a computer word are

frequently used to denote specific literals, precluding extension

beyond the number of bits or digits in a word unless extensive

coding changes are made. Such an arrangement, however, per-

mits the parallel processing of the literals of a pair of clauses,

usually by clever coding. This is useful in combining clauses,

testing to see if one clause subsumes another, forming the con-

sensus of two clauses, and so on.

It is obvious that the use of a list-processing system such as

the MIT LISP System or IPL of Newell, Shaw, and Simon has
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many advantages over the type of program just discussed. First,

the coding is more quickly, compactly, and correctly written.

Second, there is no necessity to reserve specific blocks of

temporary storage for diverse purposes, running out of available

storage for different reasons from problem to problem with un-

used storage still available in every case. Third, there is no

limitation on the maximum number of variables a single program

can handle. The only limitatibns are the upper limit on total

storage available and the time limit that can be tolerated for the

simplification of a truth function. The serial processing of literals

within a clause alone increases the running time considerably, but

for many applications this should prove of secondary importance to

the several advantages of the system.

DESCRIPTION OF SIMPLIFICATION PROCEDURES CONSIDERED

To demonstrate the advantages LISP I offers, a selected set

of the procedures mentioned in the introductory section were

coded. Under the category of prime implicant determination,

method (1) of Quine was coded in preference to method (2) of

Urbano. Aside from the fact that the latter method is more dif-

ficult to program (it is more difficult to describe preci sely in

English as well), there is still another compelling reason in

support of this choice. Quinets method sequentially scans various

unordered lists, whereas Urbano's requires numerous decisions

as to whether a particular clause is included among those of the

developed normal form. Although this could be accomplished by a

sequential scan, the situation fairly cries out for a table lookup.

Returning to Quine's method, a selected passage from

Caldwell11 will be quoted to describe the manner in which it is applied:

"In this method we start with the function expressed as a
standard sum. The first step is to compare each term in the
function with all other terms and apply the theorem XY + XY' = X
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wherever possible. All terms which have thus combined to form
shorter terms should be checked off, so that in writing the final
transmission function we can be certain that every term in the
standard sum is included.

" The process is repeated, comparing every pair of shorter
terms, until no more combinations can be made. At the con-
clusion of this process there will be a group of terms which have
not been checked off. These are known as the prime implicants
of the function and we seek to write the final transmission function
as a sum of terms taken from the prime implicants, but to reject
those that are redundant."

The next problem coded in LISP I was method (3), beginning

from any alternation of clauses and applying the following two rules:

"a) If one of the clauses of alternation subsumes another,
drop the subsuming clause. (A clause A subsumes a clause B if
all the literals of B are included among the literals of A. )

"b) Adjoin, as an additional clause of alternation, the con-
sensus of two clauses. The conjunction AB with any duplicate
literals deleted is called the consensus of xA and x'B, provided
that it contains no letter both affirmed and negated.

"The operation (b) is to be regarded as not applying in case
the consensus subsumes a clause already present. The two
operations are to be performed as long as possible. The method
(a), in particular, is to be performed as much as possible before
and after each performance of (b). When neither is applicable
further, we have the alternation of all and only the prime im-
plicants."

The final procedure coded was the production of all irredundant

normal forms from the set of prime implicants. A normal form

is irredundant if it has no superfluous clauses and its clauses

have no superfluous literals, or, equivalently, if it is an alter-

nation of prime implicants none of which is superfluous. The

simplest normal form must be included among these irredundant

forms. The first of Quine's methods, having already been coded,

was used to find the required prime implicants, but any other

method could have been used. The previously mentioned method

of the author was used instead of one of the others largely because

of personal bias. Basically, it constructs an auxiliary function

that is a conjunction of alternations. There is one conjunct for
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each clause of the developed normal form, and each conjunct is an

alternation of literals denoting those prime implicants that are

subsumed by that clause. If this auxiliary function is expanded to

normal form and subsuming clauses are deleted, the literals of the

remaining clauses denote those sets of prime implicants that make

up each of the possible irredundant forms. To conserve time and

storage, subsuming terms are deleted from partially expanded

results. The expressions so obtained are then further expanded,

and subsuming clauses are again deleted. This method:is con-

tinued until all conjuncts have been so processed and an alternation

of conjuncts, one denoting each irredundant form, have been pro-

duced. Several alternative sets of heuristics are available and

will be explained.

DESCRIPTION OF THE LISP I SYSTEM

A brief description of the LISP I System is necessary to illustrate

how easily and compactly LISP-coded programs may be written.

All examples of functions coded will be selected from assorted

truth function minimization programs.

In the ensuing paragraphs, much has been taken from the
13

LISP I Programmer's Manual to which the interested reader is

directed. LISP I is a programming system for the IBM 709 (or 704)

for computing with symbolic expressions. It has a central core

based on a class of recursive functions of symbolic expressions.

One of the features of LISP I is the use of conditional expressions,

devices for expressing the dependence of quantities on propositional

quantities. A conditional expression has the form [pl -el .,

pn-0 en] where the p's are propositional expressions and the els are

expressions of any kind. It can then be read, 'If p1 then e,, other-

wise if P 2 then e 2 ' .... otherwise if Pn then en.'1 If all p's and els

are defined, the value of a conditional expression is the value of e

corresponding to the first (ordered left to right) true proposition p.
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For example,

Ixl I[x <O-.x;T -- x].

In recursive definition, a function is defined by means of formulas

in which the defined function occurs. This is illustrated by the

following example:

n . = [n=O - 1; T--.nXIn- 1]! ].

The class of symbolic expressions treated by the LISP System

(S expressions) are formed by using the special characters

(

and an infinite set of distinguishable atomic symbols. Atomic sym-

bols are defined to be strings of capital Latin letters and digits.

S expressions include all atomic symbols and expressions of the

form (e1  e 2 ) where e1 and e 2 are themselves S expressions. A

list (mi, in 2 ... , in n ) of arbitrary length can be represented in

terms of S expressions as (in 1 (in2 . (in -n NIL)...))). Here NIL

is an atomic symbol used to terminate lists.

The LISP System also permits a class of functions of S expres-

sions. For example, the predicate eq [ x;y], which is defined if and

only if either x or y is an atomic symbol, equals T if x and y are

the same symbol, and otherwise equals F. Other useful functions

include: atom [ x] is a predicate that has the value of T or F,

depending on whether x is an atomic symbol or not.

cons [x;y] is defined for any x and y

cons [e 1 ; e 2] = (elI e 2 )

car [ x] is defined if and only if x is not an atomic symbol

car [( e1 ; e 2 )] = e 1

cdr [x] is also defined if and only if x is not atomic

cdr [(e I * e2 )] = e 2

equal [x;y] is a predicate that has the value T if x and y are the

same S expression, and has the value F otherwise
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null [x] = eq [x;NIL]

append [ x;y] has as arguments two lists x and y; this function

combines its two arguments into one new list.

In terms of functions already defined,

append [ x; y] = [ null[ x] -- y; T - cons [ car[ x]; append [ cdr[ x];y]]]

delete [x;n] removes one occurrence of x from the list n.

delete [x;n] = [ null[ n] -- NIL; equal [x; car[ n] -. cdr[ n];

T -- cons[ car[n]; delete [x; cdr [n] ] ] ]

subt [ m;n] removes from list m one occurrence of each element

of list n.

subt [m;n] = [null [n] -. m; T - subt [delete [car [n]; m];

cdr [n]]]]
union [ m;n] = append [ subt [ m;n]; n].

TYPICAL USE OF LISP I IN SIMPLIFICATION

With the useful functions defined in the last section, it will be

possible to detail the LISP coding necessary to obtain all prime im-

plicants of a truth function from the developed normal form by

Quine's method. Most readers will be familiar with this algorithm,

so it should provide an estimate of coding effort necessar y for other

simplification processes.

The function primp [ m] produces all prime implicants from

the developed normal form m, a list of lists. It is a list of clauses

of the devefoped normal form, and each of these lists is itself a

list of literals of the truth function to be simplified. Each list

denoting a clause of the developed normal form must always contain

the literals or their primes in the same order. Any convenient

atomic symbols may denote the literals and their primes (for

example, A, B C, ... and AP, BP, CP, ... , for their primes) as

long as a unique symbol is used for each. The only prohibited

exceptions are FAIL and DASH.

Abbreviating the S expression (mi 1 (m 2 ' (mn• NIL)... ))) by the

list notation (rn I , m2 .... m n), an example of a correct argument for
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the function primp (m) is primp [ ((AP, BP, C), (AP, B, C), (A, BP, C),

(A, B, CP), (A, B, C))]. Information of this kind, punched on cards,

constitutes the input to the program. The output or value of the func-

tion primp (m) is best described by an example. For the previous

argument it is ((A, B, DASH), (DASH, DASH, C)), denoting the two

prime implicants AB and C.

One possible coding of the function primp [ m] is the following:

primp [im] = primp 1 [im; scanned [m]]

primp 1 [m;n] = primp 2 [m; n; subt [n; m]

primp 2 [m; n; ol = [null [o] - m; T -- append [subt [im; n]

primp o]]]

scanned [m] = [null [m] -. NIL; T -- union [scan [car [m];

cdr [m]]; scanned [cdr [m]]]]

scan [x;n] = [null [n] - NIL; T - union [comp[ x;car[ n]];

scan [x; cdr [n]]]]

comp [m;n] = comp 1 [m;n; compare [m;n]]

comp 1 [im;n;o] = [equal [last [o]; FAIL] - NIL; T -- cons[ m;

cons [ n; cons [o; NIL ]] ]]

last [m] = [null [ml -- NIL; null [cdr [m]] -. car [m];

T -. last [cdr [im]]]

compare [m;n] = [null [n] - NIL; eq [car [n]; DASH]-*

[ eq [car [im]; DASH] - cons [ DASH; compare [ cdr [ m];

cdr [n] ]]; T - cons [ FAIL; NIL] ]; eq (car (m]; DASH]

cons [FAIL; NIL] ; eq [car [ml; car [n]] -. cons [car[m];

compare [ cdr [ ml; cdr [n] ]]; T -. cons [DASH;

strike 2 [cdr [im]: cdr [n]]]]

strike 2 [m;n] = [null [n] - NIL; eq [car [n]; DASH] -.

[eq [ car [i] ; DASH] -. cons [DASH; strike 2 [cdr [m];

cdr [n]]]; T -- cons [FAIL; NIL]]; eq [car [m];

DASH] -* cons [FAIL; NIL]; eq [ car [ m]; car [n]l -

cons [car [im]; strike 2 [cdr [im]; cdr [n]]]; TW-

cons [FAIL; NIL] ].
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Before these functions are explained in greater detail, a few comments

should be made. Auxiliary functions such as primp 1, primp 2, and

comp 1 could easily be avoided without augmenting the other functions

materially, but binding the arguments in the manner indicated saves

considerable recomputation time which the LISP I System would

otherwise perform. It should also be noted that the functions compare

and strike 2 are easily written and virtually identical even though

they may look complicated at first inspection because they are much

longer than most LISP functions.

If the functions used to define primp [ m] are examined more

closely, it cap be seen that the argument of scanned [ m] has the

same form as that of primp [ ml. It is a list of clauses and scanned

[m] compares every pair of clauses in the manner to be detailed

under comp [ m;n] and forms the union of all such comparisons.

Scan [ x;n] has as arguments a single clause x and a list of clauses n.

It forms the union of all lists comp [x;y] where y is one of the

clauses of list n. Comp [ m;n] computes compare [ m;n]; if its last

element is the atomic symbol FAIL, the value of cormp [ m;n] is NIL.

Otherwise, comp [m;n] = a list consisting of m, n, and compare

[m;nl. Compare [r;n] has two arguments, each designating a

clause. If these two clauses differ only in one literal which occurs

primed in one and unprimed in the other, compare [ m;n] is the

same as either m or n with the primed/unprimed literal replaced

by the atomic symbol DASH. If the clauses differ in any other way,

compare [ m;n] is a list with the atomic symbol FAIL as the last

element. Last [ m] is the last element of list m.

For a more thorough understanding of the previous functions,

begin with compare [ m;n] and work backwards to primp [ m].

Even a cursory knowledge of LISP indicates its relative ease in

coding this method of prime implicant determination.
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EFFECTIVENESS OF PROGRAMS PRODUCED

Two other programs were LISP coded in addition to the one

detailed in the preceding section, Quine's prime implicant determi-

nation by iterated consensus taking, and irredundant form compu-

tation by the method of this author. The coding of these prodedures

is included in the Appendix. Programs for the latter procedure and

the one of the previous section have been debugged and used on

several test cases. Debugging was quite easy, not only because very

few mistakes were made, but also because it was so easy to check

the validity of each function separately. This section treats the

usage of these programs and includes information obtained from

the test cases as to their effectiveness and limitations.

The nature of the input has already been specified for the func-

tion primp [ m]. It is exactly the same for irredundant [ m] which

computes all irredundant forms from the developed normal form.

During the computation of irredundant I m], primp [ m] is evaluated.

The value of irredundant [ m] has the form illustrated by

irredundant [((AP, BP, CP), (AP, BP, C), (A, BP, C),

(A, B, CP), (A, B, C))] = (((AP, BP), (A, B), (BP, C)),

((AP, BP), (A, B), (A, C))).

The two irredundant forms represented are AtBt + AB + BIC and

A' B' + AB + AC. Another function, irredundant 1 [ m], has the

same argument but strips off and displays the clauses that must

appear in any irredundant form. Its output is illustrated by

irredundant 1 [((AP, BP, CP), (AP, BP, C), (A, BP, C),

(A, B, CP), (A, B, C))] = ((((AP, BP))), (((BP, C))),

((BP, C)), ((A, C))).

The test cases run, using either an IBM 709 or 7090, include the

following:

primp [((AP, BP, C), (AP, B, C), (A, BP, C), (A, B, C),

(A, B, CP))] = ((A, B, DASH), (DASH, DASH, C))
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primp [((PP, QP, RP, SP), (PP, QP, R, SP), (PP, QP, R, S),

(PP, Q, R, SP), (PP, Q, R, S), (P, QP, RP, SP),

(P, QP, RP, S), (P, Q, RP, SP), (P, QP, RP, S),

(P, Q,. R, SP), (P, Q, R, S))] = (PP, QP, DASH, SP),

(DASH, OP, RP, SP), (PP, DASH, R, DASH),

(DASH, Q, R, DASH), (P, DASH, RP, DASH), (P, Q, DASH,

DASH))

For the same argument m as in the previous case,

irredundant [im] = (((P, Q), (P, RP), (PP, R), (PP, QP, SP)),

((P, RP), (Q, R), (PP, R), (PP, QP, SP)), ((P, Q),

(P, RP), (PP, R), (QP, RP, SP)), ((P, RP), (Q, R), (PP, R),

(QP, RP, SP)))

irredundant 1 [((AP, BP, CP), (AP, BP, C), (AP, B, CP),

(A, BP, CP))] = ((((AP, BP))), (((AP, CP))), (((BP, CP))))

Two more functions treated by means of irredundant [ ml were 1

E(O, 1, 2, 4, 5, 8, 10, 12, 13, 16, 17, 18, 19, 21, 24, 25,

26, 27, 29)

and

E(2, 5, 12, 22, 24, 25, 27, 28, 29, 30, 31, 32, 35, 37, 39, 45,

47, 49, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 72,

75, 76, 80, 81, 94, 97, 98, 105, 106, 108, 113, 118).

In all cases, prime implicant determination took five minutes or less,

but irredundant form determination ranged from negligible time up

to 21 hours without termination for the last case given. No provi-

sions had been made to use the common simplification procedures

involving indispensable prime implicants, and when these were

added, computation time was reduced to less than two minutes for

this case.

In general, however, irredundant form computation still took

much longer than prime implicant determination. In order to study

this more closely, several examples of the function irred [ m] were

run. The forms of its argument and value are illustrated by
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irred [(((A), (B), (D)), ((A), (C), (D)), ((B), (D), (E)), ((A),

(E)))] = ((E, A), (A, B), (E, C, B), (A, D), (E, D))

which is the list notation for

(A + B + D) (A+C+D) (B+D+E) (A+E) = AB + AD + AE + DE +

BCE.

Two other examples run were

(RI + R9) (RI + R2 + R8) (R3 + R6 + R9) (R4 + R5 + R7)

(R2 + R3 + R8 + R9) R4 + R6 + R8) (R4 + R6 + R7)

(RI + R5 + R6 + R7) (R3 + R5 + R9) (R2 + R3 + R5)

and

(B + F) (B+G+L Q+V) (B+H+W+T) (D+J) (D+I+N+S+X)

(D+H+L+P) (C+H+M+R+W) (C+I+O) (C+G+K) (O+S+W)

(J+N+R+V) (P+V) (F+L+R+X) (K+Q+V)(F+G+H+I+J)

(X+L+M+N+O) (P+Q+R+S+T) (T+X).

The latter function came from a chess board covering problem,

and its solution was of practical interest. The former problem

taxed and the latter swamped the time limitations of the computer.

Consequently, new heuristics were added. Originally, the last

two factors were expanded and simplified, then the resulting factor

was expanded with the third from the last original factor and

simplified, and so on. The new procedure tried was to expand

the original factors in pairs, simplifying the result of each

such expansion, and to repeat this process on the resulting

factors until the function was completely expanded. This permitted

computation of the first case in less than two minutes, but the

second case was still unfinished in fifteen minutes. It Was shown

that the addition of a set of heuristics to divide the problem into a

set of simpler problems by means of the well known method of

branching again permits the solution of this particular problem in

a few minutes. It would not be hard to propose a still more com-

plicated sample which would swamp the capabilities of even this

program, however.
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During the course of an ordinary machine run, the LISP Sys-4

tem is duplicated on a scratch tape. It is, therefore, trivial to make

extra tapes containing all of the functions of this report. Any

group interested in obtaining such a tape for production or further

research may do so simply by supplying a blank tape.

CONCLUSIONS

It is apparent that LISP is a convenient language in which to

program truth function simplification procedures. This would have

been even more striking if many of the auxiliary functions used to

bind variables and prevent wasteful recomputations had: not been

introduced. It is also significant that LISP imposes no reservations

on the use of tabular temporary storage to be reserved for diverse

purposes nor on the maximum number of variables a single program

can handle. Use of the functions included -in this paper should make

it easier to implement other simplification procedures.

A LISP-coded comparison of two dissimilar methods of attaining

the same goal might prove a persuasive argument in support of one of

these methods. If speed performances consistently and strongly

favor one method for a large number of truth functions considered,

it might be concluded not only that this method is preferable for

LISP implementation, but also that it is probably to be preferred

for hand computation. At least, the LISP programs seem to operate

in a manner closer to the way in which a human applies simplifi-

cation rules than do basic language coded programs, which are

more dependent upon the idiosyncracies of particular machines.

Looking more critically, the LISP program can be thought of as

applying a sequence of procedures not unlike those into which a human

has conceptually classified his complex simplification procedure.

To deduce anything about a method's applicability to hand computation

from a corresponding LISP program, the individual time or effort

requirements of the constituent components of each must be known.
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Then by means of a few inequalities (since the basic operations can-

not be expected to pose the same relative difficulty for both man and

machine) it is possible to hypothesize about the effectiveness of a

set of methods for hand computation on the basis of experimental

machine results. Care must be taken, however, in generalizing

such results to other machines.

It was not possible for the author to make any such comparisons

of several basically dissimilar methods of truth function simplifi-

cation. Several alternative heuristics were tried, however, for

carrying out individual algorithms considered, resulting in a

determilation of marked superiority for certain procedures that

did not seem intrinsically better than others. This was particularly

true in irredundant form computation as is treated in the Appendix.

It lends credence to the thesis that empirical results obtained

using the LISP Programming System may be useful for evaluating

the relative effectiveness of diverse simplification procedures.
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APPENDIX

Analogously to the way the functions defining primp [ m] were

themselves defined in terms of more elemertary functions, this

Appendix will treat the functions irredundant [ m] and primp 3 [ m]

which respectively produce irredundant forms and prime implicants

by iterated consensus taking. Explanations of the roles played by

each function and descriptions of the form of their arguments and

values will not be included. These are, however, available on request.

The list structure of both the argument and value ct the function

irredundant [ m] has previously been discussed. This function can

be defined as follows:

irredundant [m] = irred [table [ m; primp [ m]

table [m;n] = [null [ml - NIL; T - cons [column[car [m];n];

table [ cdr [ m]; n] ] ]

column [ x;n] = [null [n] -. NIL; subsume 1 [ x; delete 1

[ DASH; car [ n] I -. cons [cons [ delete 1 [ DASH; car [ n];

NIL] ;column [ x; cdr [ n] ]; T -- column [ x; cdr [ n]]]

delete 1 [ x;n] = [ null [ n] -- NIL; equal [ x; car [ n] ] -

delete 1 [x; cdr [n] ]; T - cons [ car [ n]; delete 1 [ x;

cdr [n]]]]

irred [n = [null [m] -- NIL; T -. mult [car [m]; irred[cdr[m]]]

mult[m;n] =mult2 [multl [m; n]]

mult 2 [m] =subsume 3 [m; m]

mult 1 [m;n] = [ null [ n] - m; null[ m] -. NIL; T -. append

[ expand [car [m] ; n]; mult 1 cdr [ m]; n]]

subsume 3 [m;n] = [null [n] -. m; subsume 2 [car [n];

delete [car [ n]; m] ]; subsume 3 [ delete [ car [ n]; m];

cdr [ n] ]; T -, subsume 3 [im; cdr [ n]]

subsume 1 [x;y] = null [ subt [y;x]]

subsume 2 [x;m] = [ null [ m] -. F; subsume 1 [ x; car[ m] -. T;

T -. subsume 2 [x; cdr [ m] ] ]
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expand [x;n] = [null [n] - NIL; T -. cons [union [car [n];

expand [x; cdr [ n] ]]]

Additional and modified heuristics, most of which were dis-

cussed in the main body of this paper, include:

(A) expand [x; n] = null [n] -. NIL; subsume 2 [x;n] -. cons [x;NIL];

T -* cons [union [car [n]; x]; expand [x;cdr [n]]]]

This substitution combines some simplification into the ex-

pansion process.

(B) irred [im] = [null [cdr [i]] -.. car [m]; T -. irred [irred 1[m]]]

irred 1 [im] = [null [m] -. NIL; null [cdr [m]] - m; T -.

cons [mult [car [m]; cadr in]]; irred1 [cddr [m]]]]

This change and addition replace sequential, factor-by-factor ex-

pansion and simplification by a pairwise parallel process.

(C) irredundant 1 [m] = strip [irred 3 [table [im; primp [ m]]

strip [m] = [equal [length [car [m]]; 1.0] -. cons [car [m];

strip [cdr [im]]]; T -. irred [im]]

length [y] = [null [y] -. 0.0; T -* sum [length [cdr [y]]; 1.0]]

irred 3 [m] = irred 2 [m; m]

irred 2 [m;n] = [null [n] -. m; equal [length.[car [n]]; 1.0] -

cons [car [n]; irred 3 [delete 2 [ car [n]; ml]]; T -

irred 2 [ m; cdr [n]]]
delete 2 [m;nl = [null [n] -. NIL; contained [car [m]; car[n]] -)

delete 2 [im; cdr [n]] ; T -. contained [x; cdr [y]]]

These additions strip off all indispensable prime implicants

and delete all factors that contain an indispensable prime implicant

as a. term.

Prime implicant computation by iterated consensus taking might

be accomplished by a function primp 3 [ m] whose argument is the

same as for primp [ m]. The following coding has not been debugged:

primp 3 [m] = primp 4 [subsume 5.[ m]]

primp 4 [m] = primp 5 [m; generate [m]

primp 5 [m;n] = [null [n] - m; T -. primp 6 [cons [n;m]]]
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primp 6 (im] = primp 4 [subsume 6 [m]
subsume 5 [m] = subsume 8 ( m;n]

subsume 8 [m; n] = (null [n] -. m; subsume 4 [car [n];
delete[car [ n]; ml ] -P subsume 8 ( delete ( car ( nj; m]
cdr [n] ; T -. subsume 8 [im; cdr [nJ]]

subsume 6 [m] = subsume 9 car (m]; cdr [m]]
subsume 9 [x;n] = [null [n] -. NIL; subsume 7 (car [n];

x] -. subsume 9 (x; cdr n] ]; T -. cons [ car[ n];
subsume 9 [ x; cdr [ n]]

generate [im] = gen [m;m]

gen m;n] = gen 1 [i;n; trygen [car [m]; cdr [ml; n]I
gen 1 [m;n;o] = [null [m] -. NIL; null [o] -. gen[cdr [m];

n]; T - o]

trygen [x;m;n] = trygen 1 [x;m;n; consensus 1 [x; car (m]]

trygen 1 [x;m;n;y] = (null (m] -. NIL; eq [last [y];
FAIL] v subsume 4 [ y;n] -. trygen [ x; cdr (im]; n];

T -. cons [y; m]

subsume 4 (x; m] ]null - F; subsume 7 (x; car (m] -.T;

T -. subsume 4 (x; cdr [ m] ] ]
subsume 7 (x;y] = [null [y] -. T; eq [car (y]; DASH] v

eq car[y]; car x]] -*subsume 7 [cdr [x]; cdr [y];

T -F]

consensus 1 [m;n] =(null n] -. NIL; eq (car [m];
car [n] ]v eq [ car[ m]; DASH] -. cons ( car (n];
consensus 1 [ cdr [ m]; cdr (n] ]]; eq ( car (n]; DASH] -
cons (car [ m); consensus 1 [ cdr ( m]; cdr (n]]; T -
cons (DASH; consensus 2 [ cdr [ m]; cdr [ n] ] ]]

consensus 2 [ m;n] = [ null [ n] -NIL; eq [ car [ m]; car ( n]]v
eq [ car[ m]; DASH]-. cons (car (n]; consensus 2 [ cdr [ m];
cdr [n]]]; eq [ car ( n]; DASH] -. cons ( car [m];
consensus 2 ( cdr ( m]; cdr [ n]] ]; T -. cons [FAIL;NIL]]
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